Ziv-Zakai error bounds for quantum parameter estimation.

نویسنده

  • Mankei Tsang
چکیده

I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum Cramér-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds, I derive both a Heisenberg error limit that scales with the average energy and a limit similar to the quantum Cramér-Rao bound that scales with the energy variance. These results are further illustrated by applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai bound can be much higher and thus tighter than a quantum Cramér-Rao bound for states with highly non-gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter is expected to be tight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A global lower bound on parameter estimation error with periodic distortion functions

We present a global Ziv-Zakai-type lower bound on the mean square error for estimation of signal parameter vectors, where some components of the distortion function may be periodic. Periodic distortion functions arise naturally in the context of direction of arrival or phase estimation problems. The bound is applied to an image registration problem, and compared to the performance of the Maximu...

متن کامل

Extended Ziv-Zakai lower bound for vector parameter estimation

The Bayesian Ziv–Zakai bound on the mean square error (MSE) in estimating a uniformly distributed continuous random variable is extended for arbitrarily distributed continuous random vectors and for distortion functions other than MSE. The extended bound is evaluated for some representative problems in time-delay and bearing estimation. The resulting bounds have simple closed-form expressions, ...

متن کامل

Mean Square Error bounds for parameter estimation under model misspecification

In parameter estimation, assumptions about the model are typically considered which allow us to build optimal estimation methods under many statistical senses. However, it is usually the case where such models are inaccurately known or not capturing the complexity of the observed phenomenon. A natural question arises to whether we can find fundamental estimation bounds under model mismatches. T...

متن کامل

Classes of lower bounds on outage error probability and MSE in Bayesian parameter estimation

In this paper, new classes of lower bounds on the outage error probability and on the mean-square-error (MSE) in Bayesian parameter estimation are proposed. The minima of the h-outage error probability and the MSE are obtained by the generalized maximum a-posteriori probability and the minimum MSE (MMSE) estimators, respectively. However, computation of these estimators and their corresponding ...

متن کامل

Bounds on Estimation

We review several universal lower bounds on statistical estimation, including deterministic bounds on unbiased estimators such as Cramér-Rao bound and Barankin-type bound, as well as Bayesian bounds such as Ziv-Zakai bound. We present explicit forms of these bounds, illustrate their usage for parameter estimation in Gaussian additive noise, and compare their tightness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 108 23  شماره 

صفحات  -

تاریخ انتشار 2012